Alternating Current (AC)

1. Assertion (A): In a series LCR circuit at resonance, the voltage across the capacitor or inductor may be more than the applied voltage.

Reason (R): At resonance in a series LCR circuit, the voltages across inductor and capacitor are out of phase.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **2. Assertion (A):** Average power consumed in an ac circuit is equal to average power consumed by resistors in the circuit.

Reason (R): Average power consumed by capacitor and inductor is zero

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** Peak voltage across the resistance can be greater than the peak voltage of the source in an series LCR circuit.

Reason (R): Peak voltage across the inductor can be greater than the peak voltage of the source in an series LCR circuit.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): The power rating of an element in AC circuit refers to average power rating.

Reason (R): A given value for AC voltage or current is usually its average value.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **5. Assertion (A):** Average power consumed in a circuit is never negative.

Reason (R): Instantaneous power is always positive.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** At an airport, a person is made to walk through the doorway of a metal detector.

Reason (R): Metal detector works on the principle of resonance in AC circuits.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **7. Assertion (A):** Smaller the band width, sharper the resonance and easier it is to tune an LCR circuit.

Reason (R): Resonant frequency is arithmetic mean of half power frequencies. (1) Both (A) & (R) are true and the (R) is the

correct explanation of the (A) (2) Both (A) & (R) are true but the (R) is

not the correct explanation of the (A)

- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

8. Assertion (A): At resonance in AC circuits current and emf are in phase.

Reason (R): At resonance in AC circuits, current is maximum.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **9. Assertion (A):** At frequency greater than resonant frequency, circuit is inductive in nature.

Reason (R): Reciprocal of reactance is called susceptance.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **10. Assertion (A):** If the resistance of a series resonant LCR circuit is decreased, then the peak current versus frequency graph will be taller and narrower.

Reason (R): If the resistance of a series resonant LCR circuit decreased, then its resonance will be unaffected.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

11. Assertion (A): The impedance of series L-C-R circuit can be greater, equal or less than the resistance.

Reason (R): The minimum impedance of series LCR circuit depends over angular frequency of applied emf.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

12.

Assertion (A): Current $i_1 \& i_2$ can not be in same phase.

Reason (R): If $X_L = X_C$, $i_1 \& i_2$ may be in same phase.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **13. Assertion (A):** A capacitor of suitable capacitance can be used in an A.C. circuit in place of the choke coil.

Reason (R): A capacitor blocks D.C. and allows A.C. only.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

14. Assertion (A): For series RLC network, power factor of circuit in region (1) is positive and in region (2) is negative.

Reason (R): Overall nature of circuit in region (1) is inductive while in region (2) is capacitive.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **15. Assertion (A):** KVL rule is also being applied in AC circuit shown below.

Reason (R): V_c in the circuit = 2V.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **16. Assertion (A):** When frequency is greater than resonance frequency in a series LCR circuit, it will be an inductive circuit.

Reason (R): Resultant voltage will lead the current.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

17. Assertion (A): The moving coil ammeters or voltmeters can't be employed to measure alternating current or voltage respectively.

Reason (R): If an alternating current is passed through a moving coil ammeter or voltmeter, then the average value of torque experienced by the coil is zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18. Assertion (A):** In ac supply we cannot feel any fluctuations of current in bulbs.

Reason (R): House hold ac supply has very low frequency.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **19. Assertion (A):** 220V, 50 Hz appliance implies that potential difference in bulb is always 220V.

Reason (R): Every appliance is specified with its peak tolerable voltage.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

20. Assertion (A): Transformer does not work on dc

Reason (R): dc neither changes in magnitude nor in direction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **21. Assertion (A):** Choke coil is preferred over a resistor to adjust current in an ac circuit.

Reason (R): Power factor for inductance is zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **22. Assertion (A):** The divisions are equally marked on the scale of ac ammeter.

Reason (R): Heat produced is directly proportional to the current.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

23. Assertion (A): An electric lamp is connected in series with a long solenoid of copper with air core and then connected to ac source. If an iron rod is inserted in solenoid, the lamp will become dim.

Reason (R): If an iron rod is inserted in solenoid, the inductance of solenoid increases.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24. Assertion (A):** For an electric lamp connected in series with a variable capacitor and ac source, its brightness increases with increase of capacitance.

Reason (R): Capacitive reactance decreases with increase in capacitance of capacitor.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **25. Assertion (A):** In series RL ac circuit voltage leads the current.

Reason (R): In series LCR circuit current may lead the voltage.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY																			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	4	3	3	2	3	3	2	2	4	3	2	4	3	1	1	3	4	3
Que.	21	22	23	24	25															
Ans.	1	4	1	1	2															

